Deep Private-Feature Extraction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Private-Feature Extraction

We present and evaluate Deep Private-Feature Extractor (DPFE), a deep model which is trained and evaluated based on information theoretic constraints. Using the selective exchange of information between a user’s device and a service provider, DPFE enables the user to prevent certain sensitive information from being shared with a service provider, while allowing them to extract approved informat...

متن کامل

Unsupervised Deep Autoencoders for Feature Extraction with Educational Data

The goal of this paper is to describe methods for automatically extracting features for student modeling from educational data, and students’ interaction-log data in particular, by training deep neural networks with unsupervised training. Several different types of autoencoder networks and structures are discussed, including deep neural networks, recurrent neural networks, variational autoencod...

متن کامل

Training Deep Neural Networks for Bottleneck Feature Extraction

In automatic speech recognition systems, preprocessing the audio signal to generate features is an important part of achieving a good recognition rate. Previous works have shown that artificial neural networks can be used to extract good, discriminative features that yield better recognition performance than manually engineered feature extraction algorithms. One possible approach for this is to...

متن کامل

Supplement: Discrete Deep Feature Extraction: A Theory and New Architectures

For the handwritten digit classification experiment described in Section 6.1, Table 1 shows the classification error for Daubechies wavelets with 2 vanishing moments (DB2). Table 1. Classification errors in percent for handwritten digit classification using DB2 wavelet filters, different non-linearities, and different pooling operators For the feature importance experiment described in Section ...

متن کامل

Topology Reduction in Deep Convolutional Feature Extraction Networks

Deep convolutional neural networks (CNNs) used in practice employ potentially hundreds of layers and 10,000s of nodes. Such network sizes entail significant computational complexity due to the large number of convolutions that need to be carried out; in addition, a large number of parameters needs to be learned and stored. Very deep and wide CNNs may therefore not be well suited to applications...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2020

ISSN: 1041-4347,1558-2191,2326-3865

DOI: 10.1109/tkde.2018.2878698